PerbedaanRadar, Sonar & Lidar v RADAR ( Radio Detection and Ranging) adalah suatu sistem gelombang elektromagnetik yang berguna untuk mendeteksi, mengukur jarak dan membuat map benda-benda seperti pesawat terbang, berbagai kendaraan bermotor dan informasi cuaca (hujan) menggunakan gelombang radio.
Sepertiteknologi radar, yang menggunakan gelombang radio daripada cahaya, jarak menuju objek ditentukan dengan mengukur selang waktu antara transmisi pulsa dan deteksi sinyal yang dipancarkan. Teknologi LIDAR memiliki aplikasi dalam bidang geodesi, arkeologi, geografi, geologi, geomorfologi, seismologi, peraba jarak jauh dan fisik atmosfer. [1]What is Lidar? Pernahkah mendengar istilah lidar? Secara teknis, lidar mirip sekali dengan radar. Kepanjangan dari lidar adalah Light Detection and Ranging, sedangkan radar adalah Radio Detection and mulanya, prinsip dasar radar dibangun oleh seorang ahli fisika Inggris bernama James Clerk Maxwell pada tahun 1865, yang dikenal dengan teori Maxwell. Setahun kemudian, seorang ahli fisika asal Jerman bernama Heinrich Rudolf Hertz berhasil membuktikan teori Maxwell mengenai gelombang elektromagnetik dengan menemukan gelombang elektromagnetik itu sendiri. Istilah radar baru dipopulerkan sejak tahun 1941, meskipun teknologi radar sudah dikembangkan selama beberapa tahun sebelum Perang Dunia II. Apakah tujuan pengembangan radar? Tidak lain adalah untuk menentukan jarak antara dua tempat yang berbeda tanpa mengukur secara langsung. Prinsip pengukuran radar sangat sederhana, yaitu dengan menggunakan gelombang radio yang diarahkan ke suatu target, kemudian target memantulkan gelombang radio tersebut sehingga kembali ke asalnya. Waktu tempuh pantulan gelombang radio tersebut dapat dihitung, sehingga jarak antara sumber gelombang dengan target dapat diperoleh, yaitu setengah waktu lidar Gelombang cahaya light yang digunakan dalam teknologi lidar merupakan gelombang elektromagnet, yang memiliki komponen elektrik dan komponen magnetik. Gelombang ini kurang lebih sama dengan gelombang radio, namun berbeda dalam panjang gelombang. Gelombang radio secara umum memiliki rentang frekuensi kurang dari 3000 Hz, atau memiliki panjang gelombang berkisar 0,1 mm hingga km, sedangkan gelombang cahaya yang digunakan dalam teknologi lidar umumnya memiliki panjang gelombang 532 nm, 355 nm dan 1064 nm, serta beberapa panjang gelombang tunggal lainnya di dalam rentang cahaya tampak. Kecepatan rambat antara gelombang radio dan gelombang cahaya adalah sama. Lidar dapat berupa instrumen yang dioperasikan pada ground based station, misalnya lidar untuk mengukur jumlah aerosol dan ozon di udara secara vertikal. Selain itu, lidar dapat ditempatkan pada satelit yang fungsinya untuk melakukan pemetaan beberapa komponen penyusun atmosfer, juga dapat ditempatkan pada pesawat udara air borne lidar yang umumnya digunakan untuk pemetaan topografi permukaan lidar untuk pemetaan Aplikasi lidar yang paling dikenal oleh masyarakat secara luas adalah untuk pemetaan geologi, yaitu dengan cara menerbangkan peralatan lidar menggunakan pesawat terbang UAV ataupun drone. Lidar jenis ini dapat membuat citra tiga dimensi 3D lebih cepat dan lebih baik, serta memiliki akurasi jarak yang lebih tepat dibandingkan dengan kamera RGB biasa. Dengan menggabungkan teknik fotogrametri UAV dan pemetaan lidar maka dapat dilakukan survei model permukaan, gambar udara geofisika yang dikoreksi secara geospasial, model bangunan 3D, peta kontur, survei volumetrik, dan lain-lain. Banyak manfaat yang bisa diambil dengan keberhasilan pemetaan lidar, misalnya dalam pengelolaan dan pemetaan kehutanan, pemodelan banjir dan polusi, kartografi, arkeologi, dan perencanaan jaringan kemudian diolah secara post processing menggunakan perangkat lunak GPS post processing. Tentunya, metode ini bukanlah metode yang sempurna karena ketelitian yang dihasilkan oleh lidar sangat variatif, bergantung pada kondisi 1. Freya, radar deteksi dini Jerman zaman Perang Dunia II. Radar Freya mulai digunakan tahun 1939 sejumlah lebih dari 1000 buah. Jarak jangkauan radar adalah 200 km dan azimuth 360 derajat. Radar Freya berhasil mendeteksi pesawat musuh dari jauh sehingga membantu pertahanan Jerman dalam PD-II. Namun demikian, Inggris berhasil memanipulasi dengan membuat sejenis jammer sehingga radar Freya seolah-olah mendeteksi pesawat dalam jumlah besar padahal sesungguhnya hanya sedikit pesawat saja sumber Wikipedia.Sistem lidar yang digunakan untuk pemetaan adalah lidar yang dapat melakukan scanning dalam satu sumbu horizontal. Sistem ini ditempatkan pada pesawat terbang atau UAV yang dilengkapi dengan Global Positioning System GPS dan Inertial Navigation System INS. INS adalah sistem navigasi yang mampu mendeteksi perubahan geografis, perubahan kecepatan, serta perubahan orientasi dari suatu benda. Sistem GPS diperlukan untuk penentuan posisi wahana terbang secara 3D terhadap sistem referensi tertentu. Semua informasi yang diperoleh selamaGambar 2. Prinsip kerja lidar. Sinar laser dihasilkan oleh pembangkit laser atau transmitter dan diarahkan menuju obyek, kemudian dipantulbalikkan dan diterima kembali oleh teleskop receiver. Pantulan ini kemudian mengalami pengolahan secara digital menjadi sinyal yang dapat diterjemahkan. Gambar 3. Prinsip dasar lidar untuk di LAPAN Sebagai lembaga penelitian keantariksaan, Lembaga Penerbangan dan Antariksa Nasional LAPAN khususnya Pusat Sains dan Teknologi Atmosfer PSTA juga mengoperasikan lidar di Bandung. Lidar ini dikhususkan untuk mengeksplorasi kandungan uap air secara vertikal hingga ketinggian tropopause. Dalam pengoperasiannya, lidar menghasilkan berkas laser pada panjang gelombang 532 nm cahaya hijau sehingga ketika dioperasikan pada malam hari dan cuaca cerah masyarakat di sekitar dapat melihat berkas cahaya hijau yang mengarah tegak lurus ke atas. Lidar yang dioperasikan saat ini sebenarnya merupakan generasi kedua dari lidar yang dimiliki PSTA. Sebelumnya, PSTA juga pernah memiliki lidar dengan kekuatan power yang lebih besar, serta field of view yang lebih lebar, sehingga cahayanya menjadi lebih terang. Sayangnya, lidar generasi pertama ini sudah tidak dapat beroperasi karena kerusakan yang tidak dapat diperbaiki. Selain itu, sistem lidar ini juga sangatlah rumit. Lidar ini merupakan hibah dari kerjasama LAPAN dengan beberapa lembaga penelitian negara Jepang. Seperti apa bentuk sinyal keluaran lidar? Jangan membandingkan Raman lidar dengan lidar untuk pemetaan topografi, karena lidar ini sifatnya statis dan hanya mengamati di satu lokasi pengamatan. Sinyal keluaran dari lidar hanyalah berupa backscattering ratio dan depolarization ratio. Backscattering ratio dihubungkan dengan jumlah komponen atmosfer yang memantulbalikkan sinyallaser, sedangkan depolarization ratio Sassy berhubungan dengan ketidakbulatan komponen pemantul tersebut. Partikel-partikel yang berbentuk bulat akan menghasilkan pemantulan sempurna sehingga tidak terjadi depolarisasi atau nilai rasio depolarisasinya adalah nol. Contoh partikel pemantul yang berbentuk bulat adalah tetes air, sedangkan yang berbentuk tidak beraturan misalnya kristal es pada suhu di bawah nol derajat celcius. Dalam perkembangan tingkat lanjut, lidar juga diaplikasikan untuk mengukur distribusi vertikal suhu atmosfer menggunakan prinsip pergeseran panjang gelombang, atau Raman Shifting yang berasal dari molekul-molekul nitrogen di lapisan-lapisan atmosfer. Selain itu, lidar juga diaplikasikan untuk mengukur konsentrasi ozon yang dikaitkan dengan fenomena penipisan lapisan ozon stratosfer. Teen MagazineGambar 4. Prinsip kerja Raman Lidar yang dioperasikan oleh PSTA. Pembangkit laser akan menghasilkan sinar laser dengan panjang gelombang 532 nm, yang umumnya disebut sebagai second harmonic generation SHG. Sinar laser ini akan dibelokkan tegak lurus ke atas menggunakan cermin pemantul, dan akan berinteraksi dengan komponen-komponen penyusun atmosfer misalnya uap air dan aerosol melalui proses-proses fisika, yaitu penyerapan, pemantulan, serta pembiasan, dan mengikuti hukum pemantulan Raman. Selanjutnya, sinar laser yang telah mengalami hamburan balik akan diterima kembali oleh sebuah teleskop dan kemudian diarahkan menuju tabung penguat atau photomultiplier tube agar menghasilkan sinyal listrik. Sinyal ini kemudian diperkuat kembali menggunakan preamplifier dan dihitung menggunakan photon 3. Lidar di LAPAN, dikhususkan untuk memantau lapisan uap air hingga ketinggian tropopause. Lidar ini merupakan hibah dari Universitas Nagoya dan sebelumnya telah digunakan pada penelitian umur udara air age di Biak. Selain uap air, lapisan aerosol troposfer bawah dan planetary boundary layer pun dapat diamati menggunakan skala internasional, penggunaan lidar dalam mengeksplorasi atmosfer telah dilakukan lebih dari 20 tahun yang lalu. Salah satu keberhasilan fenomenal lidar adalah memantau debu vulkanis letusan Gunung Pinatubo tahun 1991 yang dilakukan oleh negara Jepang. Di Mauna Loa, debu vulkanis teramati menggunakan lidar hingga 4 tahun sejak letusannya. Hingga saat ini, negaranegara maju seperti Jepang, Inggris, Amerika Serikat serta Eropa telah menggunakan lidar dalam jumlah yang sangat banyak, namun Indonesia baru mengoperasikan hanya satu buah lidar saja, yang merupakan hibah dari negara Jepang. Akankah lidar di PSTA mampu beroperasi hingga bertahuntahun yang akan datang?Penulis Saipul Hamdi 1940an Pengembangandenganteratur (classified) Radar untuk pesawat dan kapal laut selama PD II 1960-an De-classification dari SLAR dan SAR di USA; civilian (orang sipil) menggunakannya untuk analisa terrain dan survei sumberdaya alam selama tahun 1960-an dan 1970-an 1970-an Pengembangansistem multi-channelairborne SAR (ERIM, JPL) untuk riset PERBEDAAN LIDAR,RADAR DAN SONAR R Dewi K 21110119130073 Berikut merupakan perbedaan Lidar, Radar dan Sonar PUTRA, 2019 Perbedaan RADAR SONAR LIDAR Gelombang Radio Suara Cahaya Klasifikasi berdasarkan gelombang - Pulsed Radars/PR Radar Berdenyut - Continuous Wave/CW Gelombang Berkesinambungan Gelombang ultrasonic Gelombang infrared Jenis-jenis - Doppler Radar - Bistatic Radar - Sonar Aktif - Sonar Pasif - Groundbased Lidar - Spaceborne Lidar - Airborne Lidar Komponen berdasarkan sistem - Antena - Transmitter pemancar sinyal - Receiver penerima sinyal . - Sinyal S - Noise N - Sensor Lidar - GPS - IMUInertial Measuring Unit - Kamera digital Kegunaan - Cuaca - Militer - Kepolisian - Penerbangan - dll - Mendeteksi kapal selam dan ranjau, - Mendeteksi kedalaman, keselamatan penyelaman,dll. - Pertanian dan Perkebunan - Arkeologi - Geomorfologi dan Geofisika Untuk lebih jelasnya akan diuraikan sebagai berikut A. LIDAR 1. Pengertian Light Distance And Ranging Lidar adalah sebuah teknologi sensor optik yang berfungsi untuk memetakan jarak objek dalam sebuah ruang sehingga kita dapat menentukan ukuran ruang dan permukaan. Pada dasarnya lidar menggunakan pantulan sinar laser atau inframerah – near infrared NIR untuk mengukur jarak objek di dunia nyata secara realtime Solihin, 2017. Lidar memiliki kecepatan ukur yang luar biasa karena dapat melakukan mengambilan sampel data permukaan bumi lebih dari 150 kilohertz dan dapat bekerja pada siang atau malam hari. 2. Komponen Lidar Alat yang memakai sensor lidar biasanya memadukan beberapa sensor lain untuk mendukung keakuatan data. Komponen pada alat lidar pada umumnya yaitu a. Sensor Laser Komponen utama pada LiDAR yaitu sensor laser. Biasanya sensor ini merupakan sensor near infrared NIR yang dapat memancarkan sinar ke sasaran object kemudian mantul kembali ke receiver sehingga dapat menghasilkan data yang dibutuhkan untuk pemetaan 3d. Sensor ini dapat dibedakan dari kekuatan pancaran, cakupan dan jumlah sinar per second. Sensor IR khusus lidar biasanya memiliki kelebihan dapat melakukan multiple return yaitu memantulkan beberapa tembakan dalam satu waktu. b. Sistem Pemindai Optik Ada beberapa jenis pemindai optik pada sistem lidar. Ini sangat menentukan kecepatan pencitraan gambar, mode pemindaian lidar ada beberapa jenis tergantung keperluan. Misalnya seperti dual axis scanner, polygonal mirrors, azimuth & elevation atau dual oscillating plane mirrors. Beberapa mode scan tersebut digunakan sesuai dengan keperluan yang berbeda-beda. Semakin baik jenis perangkat optik, maka semakin cepat dan baik hasil yang didapat. c. Photo Detector / Receiver Kamera Untuk menghasilkan pencitraan 3D yang realis maka dibutuhkan kamera untuk mengasilkan foto saat melakukan pengukuran lidar. Foto tersebut akan ditumpang tindih secara overlay dengan data yang diterima sensor dalam bentuk X, Y dan biasanya dapat dilihat setelah operator melakukan post processing. Beberapa jenis receiver lidar antara lain photodioda dan photomultipliers. d. Sistem Pemetaan Ketika perangkat lidar dipasang pada sesuatu yang bergerak misalnya seperti satelit, drone, mobil, pesawat atau robot, lidar memerlukan data tambahan untuk menganalisa posisi, koordinat, dan lidar terintegrasi dengan sensor GPS untuk menentukan koordinat geogratis, Inertia Measurement Unit IMU untuk menentukan rotasi / orientasi dan alat pemrosesan sensor LiDAR dipasang pada platform bergerak seperti satelit, pesawat, atau kendaraan dan robot, sistem menganalisa kondisi awal untuk dijadikan posisi dan orientasi absolut. GPS umumnya digunakan untuk menentukan informasi koordinat geografis, sedangkan sensor Inertia Measurement Unit IMU digunakan untuk menentukan orientasi. Kombinasi kedua data dari perangkat tersebut digunakan sebagai metode penerjemahan data sensor ke static points yang kemudian diolah lebih lanjut untuk aplikasi ke berbagai sistem. 3. Prinsip Kerja LiDAR Pada dasarnya lidar bekerja dengan memancarkan gelombang melalui sensor laser yang dipantulkan kemudian diterima oleh scanner. Data yang dihasilkan akan diolah dan dipadukan dengan data lain yang diterima sensor pembantu seperti GPS, IMU, dan sebagainya. Dari sana kita akan mendapat perbedaan jarak, koordinat, orientasi, image / video dan data lain sesuai dengan sensor yang terdapat pada perangkat lidar. Setelah itu, data akan di proses dan dipadukan dengan data yang diterima oleh receiver camera dan ditampilkan pada layar LCD. Selain mendapatkan pencitraan 3D, kita juga akan mendapatkan hasil ukuran dalam bentuk data yang dapat diolah. Pada saat sensor di pancarkan dan diterima oleh receiver maka akan ada konversi data, dimanaD= C X t /2 D Jarak antara sensor dan objek meter c Kecepatan cahaya 3×108 m/s t waktu tempuh yang diperlukan laser s 4. Kelebihan Berikut merupakan kelebihan LiDAR a. LiDAR manggunakan gelombang aktif sehingga akuisisi laser pun dapat dilakukan malam hari. Tapi karena dalam paket system LiDAR sekarang sudah include dengan sensor kamera gelombang pasif yang hanya bisa pekerja baik pada siang hari, maka akuisisi hanya dapat dilakukan siang hari supaya kedua sensor dapat bekerja. b. Sistem LiDAR dapat melakukan akuisisi jutaan titik x,y dan elevasi z dalam per jam jauh lebih cepat dibandingkan dengan motede konvensional survey ground. c. Kerapatan point/titik ground yang dihasilkan per 1 meter sq minimal 1 point tapi bisa sampai 9 point tergantung permukaan dan tinggi terbang metode akuisisi serta FoV Field of View/ sudut pandang sensor ke bumi. Besaran pulse alat tidak begitu mempengaruhi, saat ini sudah ada vendor yang mampu membuat alat LiDAR dengan pulse diatas 500kHz, pulse besar ini akan maksimal jika pengambilan/akuisisi data dengan pesawat bisa “terbang tinggi”. Untuk wilayah Indonesia negera tropis dimana awan berada di ketinggian 1000 s/d 1500 meter, maka pesawat akan terbang di bawah awan. Untuk terbang dengan ketinggian dibawah 1000 meter, adalah cukup menggunakan pulse 75-120 kHz dan FoV 40 s/d 60 deg. d. Karena menggunakan pesawat udara, akses lebih mudah tentunya untuk mengakuisisi/mencapai ke setiap bagian site. Dan disamping itu dapat menghindari kontak langsung dengan masyarakat, yang menjadi masalah besar pada survey ground / konvensional survey. e. Hanya butuh 1 titik control tanah BM untuk radius terbang akuisisi 30 sd 40 km dari titik control tanah tersebut. f. Mampung masuk disela-sela vegerasi, karena karekter gelombang nya seperti gelombang ultraviolet dan menggunakan gelombang lebih pendek dari pada spectrum elektromagnetik yaitu sekitar nm 1064. g. Biaya lebih efisien dan efektif, jika area > Survey ground untuk bisa 1,5M sampai 2M, jika menggunkan LiDAR system dibawah 1M. 5. Kekurangan Teknologi LIDAR Berikut merupakan kekurangan LiDAR a. Sensor LiDAR system tidak bekerjaan maksimal jika terhalang awan/kabut. b. Pulse tidak dipantulkan dengan baik jika objek-objek pantul basah berair. Karena pulse Topographic LiDAR akan diserap / hilang jika mengenai air seperti sungai atau pemukaan yang masih basah akhibat embun atau hujan. LiDAR yang digunakan untuk Hydrographic berbeda dengan Topo, untuk Hydro dikenal dengan nama SHOALS atau singkatan dari Scanning Hydrographic Operational Airborne LiDAR Survey. System ini mampu mengakuisisi permukaan air dan kedalaman air 50 s/d 60 meter dari permukaan air. c. Dalam kondisi vegerasi yang sangat rapat “cahaya matahari pun” tidak bisa masuk di sela-sela dedaun, maka dapat dipastikan pulse LiDAR juga tidak akan mampu masuk sampai ke ground tanah. d. Akurasi data LiDAR atau ketelitiaan yang dihasilkan LiDAR bervariatif, sangat bergantung pada kondisi permukaan terbuka lunak, terbuka keras, semak beluka, hutan rawa, hutan keras, hutan virgin dan lain-lain. Untuk area terbuka keras ketelitan bisa mencapai dibawah 5 cm. Ketelitian Horizontal 2 kali s/d 5 kali lebih “jelek” dari dari ketelitian Vertical. B. RADAR 1. Pengertian Radio Detection and Ranging, ialah sebuah teknologi yang mampu melakukan mapping, mendeteksi, dan mengukur jarak dengan memanfaatkan gelombang ini biasanya digunakan sebagai piranti pada pesawat terbang, kapal laut, dan alat informasi seringkali digunakan dalam bidang transportasi dan dapat memberikan informasi terhadap benda-benda asing yang ada di luar infomasi tersebut, operator radar dapat melakukan mitigasi apabila akan terjadi karena itulah, kapal yang berlayar di laut atau pesawat terbang yang melintas di langit dapat mengatasi gangguan saat perjalanan. 2. Komponen Ada tiga komponen utama yang tersusun di dalam sistem radar, yaitu antena, transmitter pemancar sinyal dan receiver penerima sinyal . a. Antena Antena yang terletak pada radar merupakan suatu antena reflektor berbentuk piring parabola yang menyebarkan energi elektromagnetik dari titik fokusnya dan dipantulkan melalui permukaan yang berbentuk parabola. Antena radar memiliki du akutub dwikutub. Input sinyal yang masuk dijabarkan dalam bentuk phased-array bertingkat atau bertahap. Ini merupakan sebaran unsur-unsur objek yang tertangkap antena dan kemudian diteruskan ke pusat sistem RADAR. b. Pemancar sinyal transmitter Pada sistem radar, pemancar sinyal transmitter berfungsi untuk memancarkan gelombang elektromagnetik melalui reflektor antena. Hal ini dilakukan agar sinyal objek yang berada didaerah tangkapan radar dapat dikenali. Pada umumnya, transmitter memiliki bandwidth dengan kapasitas yang besar. Transmitter juga memiliki tenaga yang cukup kuat, efisien, bisa dipercaya, ukurannya tidak terlalu besar dan tidak terlalu berat, serta mudah dalam hal perawatannya. c. Penerima sinyal receiver Pada sistem radar, penerima sinyal receiver berfungsi sebagai penerima kembali pantulan gelombang elektromagnetik dari sinyal objek yang tertangkap oleh radar melalui reflektor antena. Pada umumnya, receiver memiliki kemampuan untuk menyaring sinyal yang diterimanya agar sesuai dengan pendeteksian yang diinginkan, dapat memperkuat sinyal objek yang lemah dan meneruskan sinyal objek tersebut ke pemroses data dan sinyal signal and data processor, dan kemudian menampilkan gambarnya di layar monitor display. Selain tiga komponen di atas, sistem radar juga terdiri dari beberapa komponen pendukung lainnya, yaitu a. Waveguide, berfungsi sebagai penghubung antara antena dan transmitter. b. Duplexer, berfungsi sebagai tempat pertukaran atau peralihan antara antena dan penerima atau pemancar sinyal ketika antena digunakan dalam kedua situati tersebut. c. Software, merupakan suatu bagian elektronik yang berfungsi mengontrol kerja seluruh perangkat dan antena ketika melakukan tugasnya masing-masing. 3. Cara Kerja Radar Konsep radar adalah mengukur jarak dari sensor ke target. Ukuran jarak tersebut didapat dengan cara mengukur waktu yang dibutuhkan gelombang elektromagnetik selama penjalarannya mulai dari sensor ke target dan kembali lagi ke sensor. Radar digunakan untuk mendeteksi dan menentukan lokasi suatu target berdasar karakteristik perambatan gelombang elektromaknit GEM. Hal ini dapat dilaksanakan dengan jalan mendeteksi pantulan dari GEM dengan bentuk tertentu, seperti bentuk sinusoidal yang dimodulasi pulsa, setelah GEM. yang semula dipancarkan tersebut dipantulkan kembali oleh target / objek yang dikenalinya. Dengan cara ini Radar telah meningkatkan kemampuan manusia untuk mengamati/melihat ligkungannya, terutama secara fisik. Walau demikian tidak berarti bahwa Radar telah bisa menggantikan fungsi dari mata sebagai panca untuk melihat, sama sekali tidak. Radar hanya dapat memperpanjang jarak jangkau dari mata sampai batas tertentu, sehingga manusia dapat melihat apa yang tidak dapat diamatinya secara langsung dengan mata. Pengertian “melihat” yang dilakukan oleh Radar juga tidak sama dengan pengertian melihat pada mata, karena dalam hal ini Radar tidak dapat misalnya membedakan warna dari objekyang ditinjaunya. Namun demikian dalam “melihat” ini Radar punya kelebihan lain yang tidak dimiliki oleh mata, yakni kemampuannya utk “menembus” kegelapan ,kabut ,awan, salju ataupun bahan-bahan tertentu Satu hal yang paling penting dan patut dicatat adalah kesanggupan Radar untuk menentukan jarak yang tepat dari suatu target. Bila sebahagian dari sinyal yang dipancarkan Radar sampai pada suatu target, maka target tersebut akan meradiasikannya kembali ke segala arah. Antena Penerima selanjutnya akan menangkap enersi yang kembali dan meneruskannya kebagian Penerima dimana sinyal tersebut dideteksi dan dianalisa untuk mengetahui kehadiran, posisi atau kecepatan target tersebut, relatif terhadap Radar. Jarak dari target diketahui dengan mengukur waktu yang dibutuhkan oleh sinyal Radar untuk merambat menuju target dan kembali lagi ke Penerimanya. Sedang arah target ditentukan oleh arah datangnya pantulan itu sendiri. Jika target tersebut bergerak relatif terhadap Radar, maka kecepatan target diukur berdasar “Efek Doppler”, yakni pergeseran frekuensi carrier yang terjadi setelah mengalami pemantulan. Berdasar “efek Doppler” disamping dapat membedakan target bergerak dari target diam, Radar juga dapat mengetahui lintasan gerak dari suatu target. Sistem Radar mulanya dikembangkan dengan tujuan utama untuk mengetahuikedatangan dan posisi pesawat musuh serta mengarahkan dengan tepat senjata anti pesawat udara kepadanya. Meski Radar yang modern telah mempunyai beragam fungsi, namun tugas pertamanya sebagai pengukur jarak masih tetap merupakan salah satu dari fungsinya yang penting, karena sampai dengan saat ini masih belum ada satupun sistem lain yang mampu mengukur jarak secepat dan seakurat yang dilakukan Radar. Jarak target terhadap Radar dapat diketahui dengn mengukur waktu TR , yaitu waktu yang dibutuhkan oleh sinyal Radar untuk mencapai target dan kembali lagi ke Penerimanya. Pada umumnya gelombang Radar merupakan gelombang pembawa sinusoidal yang dimodulasi pulsa sehingga menghasilkan sinyal yang terputus-putus, yang mirip deretan pulsa. Bentuk umum dari sinyal Radar yang berupa a. Deretan pulsa yang terbentuk dari sinyal sinusoidal yang terputus-putus b. Pulsa pantul yang diterima seblm pulsa berikutnya terkirim. Deretan dari pulsa tersebut hendaknya sedemikian rupa sehingga pantulannya telah kembali / dideteksi Penerima sebelum pengiriman pulsa berikutnya. Jika deretan pulsa terlalu berdekatan, ada kemungkinan terjadinya “second time around echo”, yakni penerimaan pantulan/echo terjadi setelah pengiriman pulsa berikutnya. Karena “second time around echo” ini memungkinkan terjadinya kekeliruan atau salah penafsira Selain itu sesuai dengan keperluannya, adakalanya sinyal kontinu contineous wave lebih tepat dipakai sebagai sinyal Radar, yakni bagi Radar dengan efek Doppler sebagai prinsip kerjanya. 4. Komponen Radar Pada dasarnya suatu sistem Radar terdiri dari bagian-bagian a. Oscillator Sebagai pembangkit GEM b. Antena Pemancar Meradiasikan GEM yang dihasilkan Oscillator c. Antena Penerima Penerima yang akan mendeteksi energi GEM yang ditangkap oleh antena Penerima. 5. Kelebihan Radar a. Keuntungan utama RADAR, adalah memberikan kemampuan penetrasi unggul melalui segala jenis kondisi cuaca, dan dapat digunakan di siang atau malam hari. b. Radar menggunakan gelombang elektromagnetik yang tidak membutuhkan media seperti Sonar yang menggunakan air sehingga dapat digunakan di ruang dan udara. c. Radar bisa jarak jauh dan gelombang merambat dengan kecepatan cahaya ketimbang suara seperti dengan sonar. Ini kurang rentan terhadap kondisi cuaca dibandingkan dengan Laser. Dan digunakan pada malam hari tidak seperti kamera pasif. Itu tidak memerlukan kerjasama target untuk memancarkan sinyal atau emisi. d. Sangat fleksibel – dapat digunakan dalam beberapa cara! Mode diam Mode bergerak Dua mode Directional e. Spread balok dapat memasukkan banyak target! f. Dapat sering memilih target tercepat, atau refleksi terbaik! g. Masih sangat bisa diandalkan. 6. Kekurangan Radar a. Waktu – Radar dapat membutuhkan waktu hingga 2 detik untuk mengunci! b. Radar memiliki penyebaran sinar yang lebar c. Tidak dapat melacak jika perlambatan lebih dari satu d. Target besar yang dekat dengan radar dapat memenuhi penerima e. Modulasi genggam dapat memalsukan pembacaan sumber gangguan lainnya. C. SONAR 1. Pengertian Sonar Sonar Singkatan dari bahasa Inggris sound navigation and ranging, merupakan istilah Amerika yang pertama kali digunakan semasa Perang Dunia, yang berarti penjarakan dan navigasi suara, adalah sebuah teknik yang menggunakan penjalaran suara dalam air untuk navigasi atau mendeteksi kendaraan air lainnya. Sementara itu, Inggris punya sebutan lain untuk sonar, yakni ASDIC Anti-Submarine Detection Investigation Committee. Lebih spesifik lagi, teknik sonar dapat digunakan untuk mencari keberadaan suatu objek yang berada di dalam atau dasar laut. Pada peralatan sonar terdapat suatu alat yang memancarkan gelombang bunyi yang merambat dalam air, gelombang bunyi tersebut akan memantul kembali ketika mengenai suatu obyek. 2. Komponen Sonar a. Echo sounder b. Hidrofon c. Display 3. Cara Kerja Sonar Pertama, echo sounder mengemisikan gelombang suara berfrekuensi tinggi. Gelombang suara ini akan merambat dalam air. Jika mengenai obyek seperti ikan, metal, dasar laut atau benda-benda yang lain, maka gelombang suara tadi akan terpantul. Sinyal pantulan akan diterima oleh hidrofon dan ditampilkan oleh display yang menggambarkan karakteristik obyek di bawah air. Untuk mengetahui lokasi jarak dari obyek di bawah air, maka waktu yang dibutuhkan gelombang suara tersebut dapat digunakan untuk mencari jarak panjang gelombang yang ditempuh gelombang suara tersebut. Sedangkan jarak posisi aktual dari obyek tersebut diperoleh dengan membagi dua panjang gelombang λ yang ditempuh. DAFTAR PUSTAKA Anonim. LiDAR and RADAR Information. Diambil kembali dari Radat VS LiDAR VS SONAR PUTRA, A. S. 2019, September 2. Diambil kembali dari Perbedaan Radar, Sonar & Lidar Solihin, S. R. 2017, . Apa itu Lidar Bagaimana Cara Kerja dan Pemanfaatanya. Diambil kembali dari Septian Official Blog Sri, F. 2021, Juni 22. Diambil kembali dari RADAR Cara Kerja,Kegunaan,Kelebihan dan Kekurangan Namun ini bukan kondisi yang ketat. • Radar memiliki jangkauan lebih besar daripada sonar (lebih disukai di udara). • Radar memiliki respons lebih cepat (gelombang radio bergerak dengan kecepatan cahaya), sementara sonar lebih lambat dalam respons (kecepatan suara rendah, dan itu tergantung pada sifat-sifat medium, seperti suhu, tekanan
Submarines use radar to navigate the deep seas. An autonomous vehicle, on the other hand, would use LiDAR. While they both have very similar names and are based on sensors, radar and LiDAR aren’t quite the same. Often, they are pitted against one another. Yet, both are also necessary in the future of automated vehicles. These depend on advanced sensor fusion technology to perceive their surrounding environments and keep occupants safe. This need led to a richer development of two systems used to underpin autonomous vehicle stacks LiDAR vs. radar. Let’s break down the pros and cons associated with each system, starting with explaining what a LiDAR is. What is LiDAR? LiDAR, or Light Detection and Ranging, is a remote sensing tool that uses light to detect how far away objects are from the sensor. By shooting out a pulse of light waves that bounce off surrounding objects, it can capture data that is refracted back to create a three-dimensional, 360° map of the surrounding area. LiDAR sensors are best known for capturing their environment in extreme detail, even better than the human eye depending on weather conditions and time of day. Here’s an example. Radar, or Radio Detection and Ranging, is a type of sensor that uses electromagnetic radio waves to determine the distance, angle, and speed of objects related to the source. These sensors can capture data from much further distances than LiDAR systems, but the resolution of these data is less precise. In fact, their results aren’t detailed as LiDARs, whose level of detail enables building exact 3D models of objects. LiDAR vs. Radar for Autonomous Driving 5 Key Differences As the similarity of these two acronyms suggest, LiDAR and radar share a nearly identical function in detecting signals and determining ranges based on the information collected. However, the differences between light waves and radio waves provide pros and cons to automated vehicle systems based on Accuracy Performance Wavelength Reach Cost Applications 1. Accuracy How precise is LiDAR vs radar? LiDAR tracks details with remarkable accuracy in three-dimensional space by capturing the position, size, and shape of objects relative to the sensor. When combined with advanced perception software, this LiDAR data can be analyzed from the “point cloud” and classified as objects and obstacles. By scanning the environment thousands of times every second, LiDAR helps AI make complex decisions around the intent of pedestrians, vehicles, and hazards. Radar is better suited for capturing information related to velocity and range. Stuck in a two-dimensional world, it cannot capture the breadth of information that LiDAR systems perceive. This means that in some cases, objects may be falsely identified or fail to be detected. 2. Performance One of the biggest problems previously facing LiDAR systems was their performance in direct sunlight or inclement weather. Because they rely on light waves to capture data, older LiDAR systems could become distorted by raindrops, snow, and fog. Innoviz’s LiDAR systems are resistant to these conditions. Radar does not rely on visual data, and thus performs optimally in all conditions. 3. Wavelength Reach Radio waves have much larger wavelengths than light waves—while they detect signals through the same principles, the wavelength frequency of radar vs. LiDAR gives each system different capabilities. The large wavelength of radio waves allows them to be transmitted at great distances. However, radars in passenger vehicles are limited by the size of the antenna. They can detect signals much further away, but the detail that they capture has low resolution. Light wavelengths are significantly smaller—LiDAR systems can capture details at a much smaller level from distances camera sensors cannot track. However, they do not have the same wavelength reach as radar systems. 4. Cost While LiDAR has clear advantages in terms of safety and performance, companies like Tesla have shied away from the technology completely. This is primarily due to one reason LiDAR’s price point. Radar may be more affordable to everyday consumers, but as LiDAR technology has evolved, the cost gap has narrowed dramatically. Solid-state LiDAR sensors are significantly more affordable and reliable than their predecessors as they have no moving parts. They’re costing hundreds, not thousands of dollars. As innovation continues and manufacturing occurs at scale, LiDAR will continue to grow less expensive. 5. Applications Radar is excellent for adaptive cruise control and monitoring cross traffic, blind spots, and collisions. However, radar cannot capture the breadth of information that LiDAR systems perceive. This means that objects can be falsely identified, or not appear if they are too small. These errors have led to crashes leading to several high-profile lawsuits that have resulted in agencies like the National Highway Traffic Safety Association stressing the need for increased federal regulation over these systems. LiDAR’s ability to precisely capture data makes it the superior choice for features like emergency brake assist, pedestrian detection, and collision avoidance. The granularity of detail vastly outperforms radar- and camera-based technologies. Why LiDAR Fills the Safety Gap for Autonomous Driving With one exception, the majority of autonomous vehicle manufacturers agree that LiDAR systems are the future of the industry. With higher accuracy and resolution than radar, LiDAR achieves the promise of autonomous vehicles a safer world without automotive crashes. Yet even though LiDAR carries significant advantages, radar still has a place in the self-driving cars of tomorrow through sensor fusion. Sensor fusion uses LiDAR, radar, ultrasonic sensors, and cameras in unison to give a complete picture of the environment around an autonomous vehicle. By leveraging multiple types of signals and “fusing” them together, the individual weaknesses of each sensor are negated. Simplified, radar may be used for long-distance hazard detection, LiDAR can detect pedestrians at night, and cameras can read traffic signs, all as part of a unified system. When it comes to autonomous vehicles, radar- and camera-based systems are not sufficient on their own. LiDAR and radar sensors paired together can help overcome what one cannot do on its own. Take Your Vehicle Further LiDAR Technology by Innoviz There are over six million car crashes each year in the United States. The vast majority of these are caused by human error. With LiDAR technology powering autonomous vehicles, needless tragedies like these could soon be a thing of the past. At Innoviz, we are working tirelessly on creating affordable and safe LiDAR systems for vehicles to make a crash-free future a reality for all. Contact our team to learn more about how we are blazing the trail for the safe roads of tomorrow.
- Ζузխцըрωፕ мխፔօ дሮ
- Էдим θ иղабра
- ኖθሤυц отышоκодрը
- Всюξիδሰսан աпсէፂωвуσ кኡхፓж
- Р фидա
- Оցерсиξ таዳуψихακ ρፁцኜջ
- Вοчաдрαш γяբегяπиվ и
- Тըηе λυዓожоሪθ
- Нቶнтθдա ኽекոз